加入收藏 | 设为首页 | 会员中心 | 我要投稿 拼字网 - 核心网 (https://www.hexinwang.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 综合聚焦 > 编程要点 > 语言 > 正文

n个结点构造几种树

发布时间:2022-07-09 10:33:26 所属栏目:语言 来源:互联网
导读:本节要讨论的是当给定 n(n=0)个结点时,可以构建多少种形态不同的树。 如果两棵树中各个结点的位置都一一对应,可以说这两棵树相似。如果两棵树不仅相似,而且对应结点上的数据也相同,就可以说这两棵树等价。本节中,形态不同的树指的是互不相似的树。 前
  本节要讨论的是当给定 n(n>=0)个结点时,可以构建多少种形态不同的树。
  如果两棵树中各个结点的位置都一一对应,可以说这两棵树相似。如果两棵树不仅相似,而且对应结点上的数据也相同,就可以说这两棵树等价。本节中,形态不同的树指的是互不相似的树。
 
  前面介绍过,对于任意一棵普通树,通过孩子兄弟表示法的转化,都可以找到唯一的一棵二叉树与之对应。所以本节研究的题目也可以转化成:n 个结点可以构建多少种形态不同的二叉树。
 
  每一棵普通树对应的都是一棵没有右子树的二叉树,所以对于 n 个结点的树来说,树的形态改变是因为除了根结点之外的其它结点改变形态得到的,所以,n 个结点构建的形态不同的树与之对应的是 n-1 个结点构建的形态不同的二叉树。
 
  如果 tn 表示 n 个结点构建的形态不同的树的数量,bn 表示 n 个结点构建的形态不同的二叉树的数量,则两者之间有这样的关系:tn=bn-1。
 
  【方法一】
  最直接的一种方法就是推理。当 n=0 时,只能构建一棵空树;当 n=2 时,可以构建 2 棵形态不同的二叉树,如图 1(A);当 n=3 时,可以构建 5 棵形态互不相同的二叉树 。
 
  对于具有 n( n>1 )个结点的二叉树来说,都可以看成是一个根结点、由 i 个结点组成的左子树和由 n-i-1 个结点组成的右子树。
  当 n=1 时,也适用,只不过只有一个根结点,没有左右孩子(i=0)。
 
  【方法二】
  从遍历二叉树的角度进行分析,对于任意一棵二叉树来说,它的前序序列和中序序列以及后序序列都是唯一的。其实是这句话还可以倒过来说,只要确定了一棵二叉树的三种遍历序列中的两种,那么这棵二叉树也可以唯一确定。

(编辑:拼字网 - 核心网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!